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Abstract
A new class of quasi-exactly solvable potentials with a variable mass in the
Schrödinger equation is presented. We have derived a general expression for
the potentials, including Natanzon confluent potentials. The general solution
of the Schrödinger equation is determined and the eigenstates are expressed in
terms of the orthogonal polynomials.

PACS number: 03.65.−w

In recent years, physical systems with a position-dependent mass [1–3] and quasi-exactly
solvable (QES) potentials [4] have been the focus of interest. In quantum mechanics there
exist potentials for which it is possible to find a finite number of eigenvalues and associated
eigenfunctions exactly, and in a closed form. These systems are said to be quasi-exactly
solvable. The effective mass models have been used to describe electronic properties of
semiconductors, liquid crystals and various other physical systems [5]. In this letter, we
suggest a method to obtain a general solution of the Schrödinger equation with a position-
dependent mass.

We start with a general Hermitian effective mass Hamiltonian which is proposed by von
Roos [6],

H = 1
4 (m

α(x)pmβ(x)pmγ (x) +mγ (x)pmβ(x)pmα(x)) + V (x) (1)

with the constraint over the parameters: α + β + γ = −1. Depending on the choice of the
parameters the Hamiltonian (1) can be expressed in different forms [2]. However, we shall
keep the general form of the Hamiltonian. Using the differential operator equivalence of
momentum operator p = −i d

dx , it is easy to show that the Hamiltonian (1) can be written as

− 1

2m(x)

d2ψ(x)

dx2
+
m′(x)

2m2(x)

dψ(x)

dx
+ (V (x)− E)ψ(x) + [(1 + β)m(x)m′′(x)

− 2(β + 1 + α(α + β + 1)m′2(x)]
ψ(x)

4m3(x)
= 0 (2)
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where E is the eigenvalue of the Hamiltonian (1). Our task is now to obtain a general expression
for the potentialV (x) such that the Schrödinger equation can be solved quasi-exactly. Without
loss of generality, consider the following QES second-order differential equation [4]:

z
d2 R(z)

dz2
+

(
� +

3

2
+ z(b − qz)

)
d R(z)

dz
+ (−ε + 2jqz)R(z) = 0 (3)

where �, b, q and ε are constants and j takes integer and half-integer values. The function
R(z) is a polynomial of degree 2j. The differential equation can be obtained by introducing
the following linear and bilinear combinations of the generators of the sl(2, R) Lie algebra:

[J−J0 + (� + j + 1/2)J− + qJ+ + bJ0 + (−ε + jb)] R(z) = 0 (4)

which is quasi-exactly solvable (QES) [4]. The differential realizations of the generators of
the algebra are given by [4]

J− = d

dz
J0 = z

d

dz
− j J+ = −z2 d

dz
+ 2jz. (5)

The function R(z) forms a basis for sl(2, R) Lie algebra. The solution of the differential
equation (3), which was determined in [4], is in the following form:

Rj (z2) =
2j∑
m=0

(2j)!(2� + 1)!(� +m)!

2m!(2j −m)!(2� + 1 + 2m)!
Pm(ε)(−qz2)m. (6)

Here, the polynomial Pm(ε) satisfies the recurrence relation

(2j −m)qPm+1(ε)− (ε − bm)Pm(ε) +m(� +m + 1/2)Pm−1(ε) = 0 (7)

with the initial condition P0(ε) = 1. The polynomial Pm(ε) vanishes for m � 2j + 1 and
the roots of P2j+1(ε) = 0 correspond to the ε-eigenvalues of the algebraic Hamiltonian (4).
It is well known that the differential equation (3) can be transformed into the form of the
Schrödinger equation and several quantum-mechanical potentials can be generated. In order
to discuss all the potentials related to the differential equation (3), in a unified manner we
introduce a variable z = r(x), then equation (3) takes the form
r

r ′2
d2 R(x)

dx2
+

1

r ′

[
� + 3/2 + r(b − qr)− rr ′′

r ′2

]
d R(x)

dx
+ (−ε + 2jqr)R(x) = 0. (8)

Now let us turn our attention to the effective mass Schrödinger equation (2). In this case, both
the Schrödinger equation and the QES differential equation (8) include first-order differential
terms. One can easily transform the effective mass Schrödinger equation into the form of (8).
It is convenient to express the eigenfunction ψ(x) in the usual form

ψ(x) = − 2r

r ′2m(x) e− ∫
W(x) dx R(x). (9)

Substituting (9) into (2) and then comparing with (8) we obtain the following expression for
the weight functionW(x):

W(x) = 1

4

(
2m′(x)
m(x)

− 6r ′′

r ′ +
(1 − 2�− 2br + 2qr2)r ′

r

)
(10)

and an implicit expression for the potential function as follows

m(x) [V (x)− E] = (β + 1/4 + α(α + β + 1))m′2(x)
2m2(x)

− β
m′′(x)
4m(x)

+
3

8

(
r ′′

r ′

)2

− r ′′′

4r ′

(
b2 − (2� + 8j + 5)q

+
4ε + b(2� + 3)

r
+
�(� + 1)− 3/4

r2
− 2bqr + q2r2

)
r ′2

8
(11)

where ri is the ith derivative of r with respect to x.
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At this point we first discuss the special form of the above potential. When we choose
q = 0 the potential is exactly solvable. Under the conditions q = 0 and m(x) = constant, the
potential leads to the Natanzon confluent potentials [7]. To obtain the quantum-mechanical
potentials we have to get m(x)E on the left-hand side, there must be at least one term on the
right-hand side from which a constant times m(x) arises [8]. The last term gives a constant if
the function r(x) satisfies the relation√

λ0 + λ1/r(x) + λ2/r2(x)
dr

dx
= −

√
m(x) (12)

where λ0, λ1 and λ2 are constants. In the following, we consider the potentials associated with
the radial sextic oscillator potential, the QES Coulomb potential and the Morse potential.

In order to obtain the radial sextic oscillator family potential we chose λ0 = λ2 = 0 and
λ1 = 1/4, then r(x) = −u2 = −[

∫ √
m(x) dx]2 and the potential takes the form

V (x) = �(� + 1)

2u2
+

1

2
(b2 − (2� + 8j + 5)q)u2 + bqu4 +

1

2
q2u6

+
(α(α + β + 1) + β + 9/16)m′2(x)

2m3(x)
− (1 + 2β)m′′(x)

8m2(x)
. (13)

This is a family of radial sextic oscillator potentials. We have checked that for the choice
q = 0 andm(x) = (

a + x2

1 + x2

)2
the potential takes the same form as the potential given in [2], and

form(x) = cx2 the potential corresponds to the potential given by Dutra [3]. The eigenvalue
of the Schrödinger equation with the potential given in (7) is given by

E =
(
� +

3

2

)
b + 2ε. (14)

The energy parameter ε is obtained from the recurrence relation (7).
For the cases λ1 = λ2 = 0 and λ0 = 1/4 the function r(x) = −2u and the potential takes

the form

V (x) = �(� + 1)− 3/4

8u2
− 4ε + (2� + 3)b

4u
+ 2bqu + 2q2u2

+
(α(α + β + 1) + β + 9/16)m′2(x)

2m3(x)
− (1 + 2β)m′′(x)

8m2(x)
. (15)

This potential represents a family of QES Coulomb potentials. In order to obtain the standard
form of the potential one should redefine the parameters. The eigenvalues of the potential are
given by

E = − 1
2 ((2� + 8j + 5)q − b2). (16)

For the last example we choose λ0 = λ1 = 0 and λ2 = 1 to obtain a family of QES Morse
potentials. Then r(x) = e−u and the potential takes the form

V (x) = 1

2
(ε + (�/2 + 3/4)b) e−u +

1

2
(b2/4 − (�/2 + j + 5/4)q) e−2u − bq

4
e−3u

+
q2

8
e−4u +

(α(α + β + 1) + β + 9/16)m′2(x)
2m3(x)

− (1 + 2β)m′′(x)
8m2(x)

. (17)

The standard form of the Morse potential can be obtained by reordering the parameters. The
corresponding eigenvalue is given by

E = − 1
8 (�(� + 1) + 1/4) . (18)

We have constructed a class of QES potentials for the generalized effective mass
Hamiltonian without any restriction on the parameters α and β. We have shown that one
can obtain a family of potentials, related to the sextic oscillator, QES Coulomb and QES
Morse potentials. The method discussed here can be used for obtaining other classes of
potentials which can be related to the hypergeometric Natanzon class of potentials.
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